Human like trajectory generation for a biped robot with a four-bar linkage for the knees

نویسندگان

  • Yannick Aoustin
  • Arnaud Hamon
چکیده

The design of a knee joint is a key issue in robotics to improve the locomotion and the performances of the bipedal robots. We study a design for the knee joints of a planar bipedal robot, based on a four-bar linkage. We design walking reference trajectories composed of double support phases, single support phases and impacts. The single support phases are divided in two sub-phases. During the first sub-phase the stance foot has a flat contact with the ground. During the second sub-phase the stance foot rotates on its toes. In the double support phase, both stance feet rotate. This phase is ended by an impact on the ground of the toe of the forward foot, the rear foot taking off. The single support phase is ended by an impact of the heel of the swing foot, the other foot keeping contact with the ground through its toes. A parametric optimization problem is presented for the determination of the parameters corresponding to the optimal cyclic walking gaits. In the optimization process this novel bipedal robot is successively, overactuated (double support with rotation of both stance feet), fully actuated (single support sub-phase with a flat foot contact), and underactuated (single support sub-phase with a rotation of the stance foot). A comparison of the performances with respect to a sthenic criterion is proposed between a biped equipped with four-bar knees and the other with revolute joints. Our numerical results show that the performances with a four-bar linkage are badder for the smaller velocities and better for the higher velocities. These Email address: corresponding author: [email protected] (Yannick Aoustin and Arnaud Hamon) Preprint submitted to Robotics and Autonomous Systems June 11, 2013 numerical results allows us to think that the four-bar linkage could be a good technological way to increase the speed of the future bipedal robots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Joint Trajectory Model with Customized Genetic Algorithm for Biped Robot Walk

Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a model for a biped robot joint tra...

متن کامل

Reconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot

This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...

متن کامل

On the Desing and Test of a Prototype of Biped Actuated by Shape Memory Alloys

In this paper the design of a biped robot actuated with Shape Memory Alloy (SMA) springs with minimum degrees of freedom is presented. SMA springs are a class of smart materials that are known for their high power to mass and volume ratios. It was shown that utilizing spring type of SMAs have many advantages as large deformation, smooth motion, silent and clean movement compared to ordinary typ...

متن کامل

A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres

This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...

متن کامل

Optimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves

In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2013